The structures of Hausdorff metric in non-Archimedean spaces
نویسندگان
چکیده
منابع مشابه
Gromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces
We introduce the notion of the Gromov-Hausdorff fuzzy distance between two non-Archimedean fuzzy metric spaces (in the sense of Kramosil and Michalek). Basic properties involving convergence and the fuzzy version of the completeness theorem are presented. We show that the topological properties induced by the classic Gromov-Hausdorff distance on metric spaces can be deduced from our approach.
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملNon-Archimedean Gromov-Hausdorff distance
In this paper, we study the geometry of non-Archimedean Gromov-Hausdorff metric. This is the first part of our series work, which we try to establish some facts about the counterpart of Gromov-Hausdorff metric in the non-Archimedean spaces. One of the motivation of this work is to find some implied relations between this geometry and number theory via p-adic analysis, so that we can use the for...
متن کاملSemi-compatibility in Non-Archimedean Fuzzy Metric spaces
A. George and P. Veeramani, 1994. On some results in fuzzy metric space, Fuzzy Sets and Systems, vol. 64, 395-399. B. Schweizer, H. Sherwood, and R. M. Tardi®,1988. Contractions on PMspace examples and counter examples, Stochastica vol. 1, 5–17. D. Mihet, 2004. A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 144, 431–439. D. Mihet, 2008. Fuzzy -contractive mapp...
متن کامل(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: P-Adic Numbers, Ultrametric Analysis, and Applications
سال: 2014
ISSN: 2070-0466,2070-0474
DOI: 10.1134/s2070046614010038